skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tan, Changjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bridge Weigh-in-Motion (B-WIM) is the concept of using measured strains on a bridge to calculate the axle weights of trucks as they pass overhead at full highway speed. There exist a consensus that conventional instrumentation faces substantial practical problems that halts the feasibility of this theory, namely cost, installation time and complexity. This article will go through a new concept by moving toward the first Portable Bridge Weigh-In-Motion (P-B-WIM) system. The system introduce flying sensor concept which consist of a swarm of drones that have accelerometers and able to latch bridge girders to record acceleration data. Some perching mechanisms have been introduce in this paper to allow drones to latch bridges girders. At the same time, a new algorithm is developed to allow the B-WIM system to use the acceleration data to estimate the truck weigh instead of the strain measurements. The algorithm uses the kalman-filter-based estimation algorithm to estimate the state vectors (displacement and velocities) using limited measured acceleration response (from drones). The estimated state vector is used to feed a moving force identification (MFI) algorithm that shows good results in estimating a quarter car model weight. 
    more » « less